" A flying saucer is something simple! "

" Complexity is complexly expounded simplicity." Kalagia.

One of the basic features and probably the main one of a UFO type device is its capacity to transform an electromagnetic field which in turn is a manifestation of time and space. The electromagnetic field of planets, stars and galaxies is a power-consuming media used by aforementioned devices for travelling. Further on when describing the operation of time and space field transformers we shall use the term "a flying saucer" or just "a saucer".

  1. Layout.

The operational basis for a "flying saucer" type of a device is made by an operation of a space thermocouple.

Let us remind you that if a closed chain is made up by two different conductors, and the temperature of their soldered joints is maintained on a different level, then an electric current conditioned by electromotive force (emf) occurs within such a chain. In this specific case such a force is called thermoelectromotive force (thermo-emf). A chain where the current is conditioned by thermo-emf is called a thermocouple.

Within small temperature intervals thermo-emf is proportional to the soldered joints temperature difference:

E = a (1 - 2);

The a value is called a thermocouple constant. The direction and other parameters of electric current are the function of metals' position within a thermoelectric series.

Let us study the operation of a thermoelectric device made up by two different metal plates, each of them having a shape of a circle. The plates are connected to each other by means of soldered joints.

1-st type.

Different conductors of a circular shape with an R radius are connected by means of: soldered joints made along the radii thus breaking up the circle into equal segments; one soldered joint with an r radius connecting all the radial soldered joints; and one central soldered joint (see Figure 1). Let's assume for the sake of the argument the number of radial soldered joints being six. The heat is applied in the center of the central soldered joint. Heat transition within the metals of this device is described by the Furrier's law.

D Q = - l S D t D T/ D l

where D T/D l is a temperature gradient;

l is thermal conductivity;

S is a carry surface area;

then

D T/D l = - D Q/D t * 1/l 2p Ra

where a is material thickness.

Thus, in our case a temperature gradient is inversely proportional to the radius.

D T/D l ~ 1/R

Should we maintain T1 temperature in the central soldered joint, then on the circular soldered joint of the r radius we shall have the points with the T2 temperature, so that

T2 - T1 = D T

where DT a temperature difference providing for electric current initiation within the given circuit under study. The points with the T2 temperature according to the reasons stated below will occur at the equal distances between the radial soldered joints (see Figure 2). For each point having the T2 temperature there will be a point with the T3 temperature so, that

T3 - T2 = D Tmin

where D Tmin is the minimal necessary temperature difference for the minimal possible electric current to occur for the given circuit under study.

For every point with the T3 temperature found on the radial soldered joint there will be points with the temperature T4 found on the adjacent radial soldered joints, so the condition mentioned above is in place. For every point with the T4 temperature there will be a point with the T5 temperature found, etc. At the tips of the radial soldered joints or in their immediate vicinity there are points with the Tn temperature where the whole process ends. No current will be transmitted from a T3 point to the point lying between the T4 and T5 points, for as the resistance increases the current will be lower than the minimum possible one for the given circuit. No current will be transmitted from a T3 point to a point lying below T4 either, for a merger of resulting currents with the newly generated currents will result in a raised energy status of the system. The latter, however, is impossible. The total picture of the currents will be identical to the one found at Figure 3. Figure 3 shows that the currents' field has a helix shaped structure with the current density gradiently decreasing from the center to the periphery.

The smoothness of the helix and the dependence of its radius on the angle of the helix curve, in other words, the steepness of a helix, depend on the quantity of the radial soldered joints.

Helix shaped current streams are influenced by Ampere forces. Let us study Figure 4, where three streams of current with identical helix direction are shown. The streams will be marked as I1, I2 and I3. The I2 current stream is attracted to the I1 current stream rather than to I3 current stream, for the distance between I2 and I3 currents always exceeds the one between I2 and I1 currents due to the hyperbolic dependence of the temperature gradient. Thus, for any given set of three adjacent current streams the middle stream is attracted to the one located closer to the center, in other words, F1 is always greater than F2. Due to the helix shaped flow of current, when the angle of the helix curve varies as a function of the radius change, the Ampere force applied to every point of a current stream (with the exception of the point on the radius) will have its eccentricity with the center. Let us show the F1 and F1' forces on a section of the current placed between the two adjacent radial soldered joints, and split the forces into their tangential and regular constituents, Fn and Ft. The current can not merge under the influence of its regular constituent, for wen the current streams merge together, new streams are immediately and continuously formed in their place which would result in an increase of the system's energy status, which is impossible. Under the influence of their regular constituent the current streams acquire their slight bending. The action of the tangential constituent, however, can allow the helix system to move in circles around the center without any change of the energy status alongside with the appearance of the necessary conditions outlined below. No modification of the system status occurs as a function of Ampere forces action within the intersections of the current's helixes of the opposite directions, for the system is in equilibrium.

Every helix shaped current stream can be treated as a coil with the number of turns comparable to the magnitude inversely proportional to the interatomic spacing due to a high temperature gradient in proximity to the heating area.

The inductivity of such a coil will be very high.

L = m W2 S/l

where W is a number of turns.

The emf of self-induction for such a coil will be directly proportional to the square of the number of turns. The current reduction is determined by a helix character of the resistance.

E = - LdI/dt = - m W2S/l * dI/dt

With the helix formation and the increase of the number of turns the coil inductivity increases. It is this high inductivity that allows the helix system to rotate. Indeed, when turning, the tips of the helix enter the area of thermo-emf absence. This leads to reduced resistance and increased current, which, provided there is a constant rotation (and insufficiently high inductivity) would have lead to a continuous growth of the energy status of the system, which is impossible. However, at a certain value of inductivity the emf of self-induction does not allow for the current growth. This is manifested by the ability of the free helix tips to move in the area of thermo-emf absence at the expense of the emf of self-induction, manifested by high potential difference and an electric discharge, shorting the helix circuit between the plates.

Consequently, with the helix formation and the inductivity approaching its certain critical value of Lcr, which can provide for reaching the emf of self-induction, its value being equal to the breakdown voltage between the plates, the helix system will start its rotation in the direction of the helix rotation. In our case the helixes rotate towards each other. With the increase of the rotating system's diameter the breakdown voltage move in a radial manner from the center to the periphery, rotating in the opposite directions in conformity with the opposite direction of the helixes' rotation (see Figure 5). Should the emf of self-induction exceed the value of the break-down voltage and beyond the thermo-emf influence area the excess charge moves in a radial manner from the center to the periphery.

It should be mentioned here that within a thermocouple one part has its electric conductivity, i.e., negatively charged particles move, and the other part has its p-type (hole-type) conductivity, i.e., positively charged particles move. All the system of the currents will look according to Figure 6. Let us note that when turning, the currents from point T1 to point T2 bend towards each other under the influence of the Ampere forces.

2-nd type.

The second type is identical to the first one. This also is a space thermocouple made up of the plates having different nature and a circular shape, connected by radial soldered joints. The central soldered joint is missing, though. The circumference perimeter is connected by a soldered joint with the R radius instead. The second soldered joint with the r radius is places at a certain distance l from the circumference soldered joint, thus determining the position for T2 points. Radial soldered joints also split the circle into equal number of segments. The tips of the radial soldered joint do not reach the center of circumference, thus forming a free area (see Figure 7)

In this case the heating goes along the circumference soldered joint. In conformity with the logical chain described above, the currents will look as described by Figure 8. The rotation of the entire system is effected in the direction of the helixes' rotation.

Magnetic streams formed by the helix shaped currents of both types will have their structure as shown by Figure 9 (the first type is shown).

  1. Working principles.

Rotating helix systems have an ability to thicken or rarefy the media they operate within. Everyone is familiar with the thickening or rarefaction effect of rays of light occurring on rotation of two plates with spiral-shaped cuts in the opposite directions. The effect of moving the light to or from the center depends on helixes' run-on or disperse. In our case the rotating helix-shaped currents serve as a sort of a "pump", capable of increasing or discharging the density of electromagnetic field.

I. The rotation of a helix system towards each other for a 1-st type "saucer".

    The density of electric field decreases in the heat supply area with the thickness increased from point T1 to point T2.

    The density of electric field decreases from the circumference of the helix shaped electric currents' system with the thickness increased to point T2.

    Beyond the circumference of the helix shaped electric currents' system the density of electric field increases from the circumference towards outer space (see Figure 10).

    The magnetic field in the heat supply center increases from point T2 towards the center.

    From point T2 towards the circumference of the helix shaped electric currents system's influence the magnetic field's density increases, forming a rarefaction in point T2.

    The magnetic field's density increases from the outer space towards the circumference of the helix shaped system's influence, forming a high thickness area within the circumference of the helix shaped system's influence and rarefaction areas in the outer space (see Figure 11).

II.The rotation of a helix system for a 2-st type "saucer".

    The density of electric field increases within the circumference of the heat supply area from point T1 and the outer space to point T2.

    The density of electric field increases within the circumference of the helix shaped system from the influence circumference towards point T2.

    Beyond the influence circumference the density of electric field increases in the center (see Figure 12).

    The magnetic field in the heat supply circumference rarefies in point T2 and thickens towards the periphery.

    From point T2 towards the circumference of the helix shaped system's influence the magnetic field's density increases, forming a rarefaction in point T2.

    The magnetic field rarefies in the center of electric discharge, getting thicker towards the circumference of the helix shaped system's influence (see Figure 13).

Thermocouple 1-st type operation.

1 - the center (electric field rarefaction area and magnetic field thickening area);

2 - T2 point (electric field thickening area and magnetic field rarefaction area);

3 - helix shaped system influence circumference (electric field rarefaction area and magnetic field thickening area);

4 - outer space beyond the helix shaped system influence circumference.

On the structure's surface the system of rotating helix shaped currents operates as a "pump", rarefying or making thicker the density of electric and magnetic fields, forming thickened and rarefied areas. Here on the structure's surface the thickened zone expands from the rarefaction area towards the thickened area. Outside of the structure surface the field has to exit the thickened area to the rarefied area. The exit from the thickened area as well as the entrance to the rarefied area is effected perpendicular to the structure's surface. Here the transition of the field's density occurs along the circumference arc.

Condition: the transition of the field's density from the thickened area to the rarefied area occurs if the angle of the transition circumference arc is within

0 < a < 180

Let us study how a thermocouple 1-st type operates in heating conditions for the electric field (see Figure 14). When the center is heated, the helixes' rotation conditions initiates. The thickening in point T2 and rarefaction in points 1 and 3 will initiate the delivery of electric field from the outer space until the heating according to schemes 1-2, 3-2 stops. When the heating stops, areas 1-2, 3-2 are closing thus demonstrating a steady equilibrium. For the magnetic field the thickening goes through point T2 from the outer space towards points 1 and 3. The stability of such a system is conditioned by the fact that the thickened magnetic field in point 1 initiates the heating of the center. Thus, the entire system, having received a certain energy potential from the outer space and confined, acquires its stability (see Figure 15). When the potential is removed by the outside consumers the exit of the fields' density is effected through their thickened areas until the formation of a helix dependency, related to the temperatures' gradient, stops. This process is a manifestation of the entire system's cool-down. Such a structure is capable of accumulating and retaining the energy of the environment, which can be utilized. This model is an energy scheme of a rotating gyroscope represented by a cylinder-shaped disc. The 2-nd type thermocouple operates identically to the 1-st type one, but in respect of electric and magnetic fields this operation is mirrored.

The operation of the 1-st type thermocouple having the shape of a truncated cone (a "saucer") for the magnetic field (see Figure 16).

The basis for the operation principle of the thermocouple having a shape of a "saucer" lies in the availability of thickened and rarefied areas which can not get confined in an arc.

Indeed, all the areas are confined on the concave surface of a "saucer". There are three of them (for any two-dimensional drawing): 1-2-1; 1-2'-1, 3-2'-3'-2-3. There are two areas on the convex surface of a "saucer": 2'-3'-2' and 2-3-2. Areas 1-2 and 1-2' are opened for the angle of the circumference arc exceeds 180 degrees. Consequently, when the process on the concave surface of a "saucer" is closed, it is opened on the convex surface of a "saucer". This opened process is executed according to the following pattern: -4-3-2-1- and -4'-3'-2'-1'-. It means that the magnetic field delivered from the outer space is getting thicker from the periphery towards the center and exits from the center to the outer space.

The operation of the 1-st type thermocouple having the shape of a truncated cone (a "saucer") for the electric field (see Figure 17).

The operation mode is identical to the one for the magnetic field with the only exception: the electric field is delivered through the center and, getting thicker, exits through the periphery to the outer space. The thickening pattern is the following: -1-2-3-4- and -1'-2'-3'-4'-.

The 2-nd type thermocouple for a saucer shape operates identically to the 1-st type thermocouple, but in respect of electric and magnetic fields this operation is mirrored. The movement pattern for a magnetic field (1-st type) is shown on Figure 18. The temperature is maintained in the main soldered joint (either central or circumferential one) by the thickness of the magnetic field delivered in this point. Because the electromagnetic field comes in and exits on a path determined by the given structure, one can conclude that such a structure transforms the energy of the outer space, thus changing the entropy of the latter (from the periphery towards the center or vice versa), but nevertheless remaining subject of the law of energy conservation.

| Prolongation | The Russian version | Main page |

m1.gif[12 ]